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The complex suite of organic materials in carbonaceous chondrite meteorites probably originally
formed in the interstellar medium and/or the solar protoplanetary disk, but was subsequently
modified in the meteorites’ asteroidal parent bodies. The mechanisms of formation and
modification are still very poorly understood. We carried out a systematic study of variations in
the mineralogy, petrology, and soluble and insoluble organic matter in distinct fragments of the
Tagish Lake meteorite. The variations correlate with indicators of parent body aqueous alteration.
At least some molecules of prebiotic importance formed during the alteration.

arbonaceous chondrite meteorites are sam-
‘ ples of kilometer-sized primitive asteroids

that preserve to varying degrees the initial
solid components of the solar protoplanetary disk
[or nebula (7)]. As such, these meteorites are sam-
ples of the material that took part in planet forma-
tion nearly 4.6 billion years ago. The chondrites
also preserve a record of the processes that oc-
curred in their asteroid parent bodies, such as ther-
mal metamorphism, aqueous alteration, and impact
brecciation (/). Organic matter composes up to
several weight percent of carbonaceous chon-
drites and includes macromolecular material
and a variety of simpler molecules (2) that are
generally referred to as insoluble organic mat-
ter (IOM) and soluble organic matter (SOM),
respectively, because of their relative solubilities
in typical solvents (3, 4). Organic matter in car-
bonaceous chondrites shares characteristics with
material from other primitive extraterrestrial sam-
ples, including interplanetary dust particles (IDPs),
samples of comet 81P/Wild 2 (5, 6), and some
Antarctic micrometeorites (7). The common fea-
tures of IOM from carbonaceous chondrites and
comets suggest that there was a common source
of such organic matter—the outer solar nebula
and/or the interstellar medium—and that the
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diversity of organic matter in meteorites is the
result of variable degrees of parent body modi-
fication (8).

Earth’s carbon was provided by the accretion
of early solar system solids. The accretion of
meteorites and other asteroidal and cometary
material by the early Earth may have been a
source of intact organic matter that was necessary
for the advent of life (9). Carbonaceous chondrite
SOM includes molecules of prebiotic interest
such as amino acids, nucleobases, monocarboxyl-
ic acids (MCAs), sugars, and polycyclic aromatic
hydrocarbons (3). Some of these compounds
may be the result of hydrothermal alteration of
IOM in the meteorite parent bodies (/0—12), but
which compounds formed in this manner is an
open question.

Here we report on IOM and SOM in several
individual stones of the Tagish Lake meteorite
shower (/3) that have experienced different lev-
els of hydrothermal alteration (/4). The meteorite
is an ungrouped type 2 carbonaceous chondrite
(it has affinities to both CI and CM meteorites)
consisting of chondrules set in a fine-grained
matrix that is dominated by serpentine and sap-
onite clay minerals (/5), and it has been linked to
the primitive D-type asteroids (/6). Lithological
variability on the scale of individual stones may
be attributable to different conditions of alteration
and/or impact brecciation (/5). The Tagish Lake
meteorite contains a high concentration of or-

ganic matter, nearly 3 weight percent (wt %) (17).
An unusual distribution of soluble organic com-
pounds that are dominated by carboxylic and sul-
fonic acids, with only trace (part-per-billion) levels
of amino acids, has previously been reported for
the Tagish Lake meteorite, suggesting a distinct
pathway of organic synthesis as compared to CI
and CM meteorites (/8, 19). Sub—micrometer-
scale carbonaceous globules that are often sub-
stantially enriched in ‘>N and D and are thought
to have formed in the interstellar medium or the
cold outer solar nebula were previously identified
in the Tagish Lake meteorite (5, 20), demonstrat-
ing the preservation of such material in spite of
parent body alteration.

Terrestrial contamination and modification,
both abiotic and biotic, are perennial concerns in
the study of meteorite organics. The first Tagish
Lake meteorite specimens fell on a frozen lake,
were collected without hand contact within a few
days of the fall, and have been kept frozen ever
since (21), providing an opportunity for the study
of organic matter in a pristine meteorite sample.
Much of what is known about the Tagish Lake
meteorite derives from studies of this pristine
material (18, 22). However, only a handful of the
48 pristine stones have been examined in detail
(21). We selected four specimens from among
these stones on the basis of their macroscopic
properties, in order to carry out a systematic study
of the variations in organic matter in this meteorite
and to test whether variations in IOM or SOM
correlate with petrologic differences. We processed
subsamples of each of the four specimens (5b,
mass 4.3 g; 11h, 6.2 g; 111,4.7 g; and 11v, 5.6 g)
in parallel, providing extracts for the analysis
of SOM and IOM separates, material for x-ray
diffraction, and polished mounts for microbeam
analyses (/3).

All four specimens are composed of olivine-
and pyroxene-bearing chondrules and chondrule-
like objects, compact lithic fragments, and isolated
olivine or pyroxene grains, set in a fine-grained
porous matrix dominated by clays, sulphides, mag-
netite, and carbonates. Based on the relative pro-
portions of porous matrix and framboidal magnetite
(15), and the increasing replacement of chondrule
glass by phyllosilicates (23), the degree to which
the specimens have undergone aqueous alteration
is in the order 5b < 11h << 11i. Specimen 11v,
which consists of disaggregated material collected
from the lake ice surface, is heterogeneous on the
microscale, comprising clasts whose petrologic

Table 1. Summary of results of IOM analysis of Tagish Lake specimens. See (41). Previous data are from (8).

Sample Previous 11v 11i 11h 5b

C (wt %) ~2 1.77(9) 1.82(4) 1.86 1.6(3)
H/C (at.) 0.337 0.44(1) 0.51(2) 0.594 0.72(4)
N/C (at.) 0.043(2) 0.041(1) 0.042(2) 0.042 0.042(2)
813C (%o) —14.2(1) -13.3 —-13.3(1) -143 —~14.7(2)
N (%o) 73(2) 58(2) 53(1) 57 57(4)
3D (%o) 596(4) 815(25) 992(15) 1470 1844(10)
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characteristics cover the range seen in the other
three specimens. The macroscopic differences
among the specimens are attributable to the pro-
portions of the various components, as well as
matrix grain size. For example, 111, which is very
dark and tends to shed a residue of black dust, has
a lower proportion of chondrules and a smaller
average matrix grain size (<5 pm).

Isotopic and chemical analyses of bulk IOM
separates from each of the four specimens (Table
1 and Fig. 1A) show that the largest variations are
in the H/C ratios and H isotopic compositions
(8D); variations in N isotopic compositions and
in C in IOM as a proportion of the rock are
negligible. C isotopic compositions show a small
but substantial increase in the order 5b > 11h >
11i~11v (Table 1). The variations in H/C and 6D
observed in IOM in these specimens span almost
the entire range found among the different car-
bonaceous chondrite groups (Fig. 1A). This lends
credence to the suggestion that the variation in
IOM elemental and isotopic compositions found
in chondrites is the result of parent body mod-
ification of a common precursor (8). Further-
more, there is a linear correlation between H/C
ratios and 8D values (Fig. 1). Solid-state '*C and
"H nuclear magnetic resonance spectroscopy and
carbon x-ray absorption near-edge spectroscopy
[C-XANES (24)] (/3) indicate that the decrease
in the H/C ratio is accompanied by an increase in
the proportion of aromatic C in the IOM as well
as a considerable increase in aromatic substitu-
tion, probably aromatic condensation (/3). The
change in H/C was not accompanied by a sub-
stantial loss of C (Table 1), which may indicate
that the aliphatic component in the Tagish Lake
meteorite was converted into aromatic C, while
undergoing H isotopic exchange with the altering
fluid and/or preferential D loss. This apparently
facile transformation is unexpected. It is most
likely caused by hydrothermal alteration, as is ob-
served in experiments involving hydrous pyrolysis
or reaction with water at elevated temperature and
pressure (11, 25), and differs from the scenario in
which aliphatic C is selectively removed through
reaction with an oxidant (26).

High-spatial-resolution secondary ion mass
spectroscopic (SIMS) measurements reveal that
the isotopic differences observed in bulk IOM
residues extend to submicrometer scales. [OM
from sample 5b shows not only a higher average
D/H ratio but also a much higher proportion of
very D-rich submicrometer-sized isotopic hot
spots (Fig. 1B) with more extreme D/H ratios
than those from 11v [maximum 8D ~20,000 per
mil (%o) in 5b versus ~7000%o in 11v]. These
observations suggest that parent body alteration
has substantially removed D, decreasing the D/H
ratio on all spatial scales and reducing the number
of hot spots. Similar variations in D enrichments
and abundances between chondrites have been
observed before, but never in a single chondrite.
In contrast, the N isotopic distributions are sim-
ilar except that Sb contains about twice the num-
ber density of '*N hot spots (with 8'"°N in both
residues up to ~800%o). This difference in be-
havior of H and N isotopes supports observations
in previous studies that D and "°N enrichments in
IOM tend to be decoupled (5). Isotopic hot spots
are, in many cases, associated with carbonaceous
nanoglobules (3, 20). Transmission electron mi-
croscope (TEM) examinations indicate that [OM
from sample 5b has a significantly higher fraction
(7.5%) of nanoglobules than does IOM from 11v
(0.9%) (13). C-XANES (24) indicates the pres-
ence of two chemical classes of nanoglobules,
one with a C functional group distribution similar
to that in nonglobular IOM and one dominated
by aromatic functionality (/3). Aromatic-type nano-
globule spectra are seen in a higher fraction of
nanoglobules from 11v as compared to 5b [50%
versus 20% (/3)]. Taken together, the SIMS,
TEM, and XANES results suggest that '*N-rich
nanoglobules have been preferentially destroyed
in specimen 11v by hydrothermal alteration. More-
over, the higher fraction of highly aromatic nano-
globules in the more altered sample supports the
conclusion from the bulk data that the altera-
tion largely affects the aliphatic component of
the IOM.

Based on IOM results, the degree of alteration
reflected by the Tagish Lake specimens is 5b <
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ITh < 11i < 11v, which is consistent with the
order inferred petrologically. Within this context,
we examined the results of the SOM analysis to
determine whether the hydrothermal alteration
has resulted in the formation, modification, or
destruction of soluble organic molecules and to
elucidate the relationship between IOM and
SOM during the alteration.

MCAs dominate the water extracts of the
Tagish Lake meteorite. MCAs, such as formic
and acetic acids, play essential roles in biochem-
istry (11, 27, 28); higher homologs are the fatty
acids that self-assemble into membrane-bound
vesicles in meteorite extracts and are the possible
precursors of cell membranes (29). We identified
11 MCAs in all specimens, including most of the
members of the homologous series of linear,
saturated MCAs from C; to C;o. One or two
branched isomers were detected in all specimens
with the exception of 5b, in which 17 branched
isomers were detected, in addition to the 11 linear
MCAs. Numerous alkyl-substituted phenols were
also found exclusively in 5b. Although, as in pre-
vious studies, 8'°C values are generally consistent
with terrestrial values, these MCA hydrogen
isotopic compositions are D-enriched, consistent
with an extraterrestrial origin (2): As measured in
5b, 8D (acetic), 247%o; 8D (formic/propanoic),
708%o; 8D (butanoic), 562%o; 8D (isopentanoic),
697%o (13). The observed concentrations of these
low-molecular-weight MCAs are unusually high
relative to those seen in other studies of carbo-
naceous chondrites [including Tagish Lake (18)],
ranging from 42 to 250 parts per million (ppm)
for formic and acetic acid (13). We attribute these
large concentrations to the preservation of the
meteorite below 0°C since its recovery, which
has minimized the loss of volatile organics, such
as formic acid, as well as the specifics of the
analytical methods (/3). In nearly all specimens,
the concentrations of the straight-chain MCAs
decrease in a logarithmic manner as the C num-
ber increases, with the exception of 5b, in which
the acetic acid concentration exceeds that of formic
acid. The §"*C values of MCAs differ among the
specimens (Fig. 2). All specimens have common
8'3C ~—20%o for formic acid, and higher homologs
approach a constant value of ~ —5%o (average
nonanoic acid = —26 * 2%o) with increasing C
number. The largest differences are observed
in acetic acid, which ranges from +8%o (11h)
to —36%o (5b). Of particular note is specimen 11h,
which shows a decrease in 8'*C with increasing
C number (Fig. 2).

The differences in MCAs among the Tagish
Lake specimens may be explained by differing
degrees of parent body modification. With the
exception of formic acid, specimens 5b and 11h
contain the highest concentrations of MCAs, 2 to
10 times greater than concentrations in 111 and
11v (13), attributable to loss or destruction of
these water-soluble compounds during progres-
sive parent body alteration. The high proportion
of branched isomers in specimen 5b suggests that
it preserves a more primary suite of compounds

10 JUNE 2011

Downloaded from www.sciencemag.org on June 9, 2011

1305


http://www.sciencemag.org/

REPORTS

1306

(2). The MCA pattern for 11h shows a trend of
decreasing 8'*C with increasing C number, com-
parable to results for Murchison (30). Whereas
this trend has been attributed to the preservation
of the signature of kinetically controlled C ad-
dition in MCA synthesis, which takes place in
cold, interstellar, or nebular environments (37),
our results, which suggest that specimen 11h is
more altered than 5b, imply that such a pattern
may be a secondary signature. One possible
explanation for the pattern in this case is the
preferential exchange of MCA carboxyl C with
inorganic C during hydrothermal processing,
analogous to the process that occurs in oil-prone
source rocks on Earth (32). In the Tagish Lake
meteorite, the presence of carbonate §'°C ~ 67%o
(17) may provide a source of isotopically en-
riched carbonate for such exchange. Notably,
formic acid concentration and C isotopic compo-
sition remain relatively constant among the speci-
mens (/3), which suggests that they are relatively
unaffected by aqueous alteration (/0) and may be
inherited from preaccretionary material.

Amino acid concentrations and enantiomeric
excesses in the Tagish Lake specimens provide
further evidence of the influence of parent body
aqueous alteration on SOM. We determined
the distribution and enantiomeric abundances of
the one- to six-C aliphatic amino acids found in
extracts of specimens, 5b, 11h, and 11i by ultra-
performance liquid chromatography fluorescence
detection and time-of-flight mass spectrometry
(33). We measured stable C isotope analyses of
the most abundant amino acids in 11h with gas
chromatography coupled with quadrupole mass
spectrometry and isotope ratio mass spectrome-
try. The total abundances of amino acids decrease
in the order 11h (5.6 ppm) > 5b (0.9 ppm) > 11i
(0.04 ppm). The abundances of many amino acids
in 111 were below the analytical detection limit
(<1 part per billion), which is consistent with a
much higher degree of alteration experienced by
11i as compared to 11h and 5b. The abundance of
the nonprotein amino acid o-aminoisobutyric
acid in specimen 11h was 0.2 ppm, approximate-
ly 200 times higher than previously measured
in two different Tagish Lake meteorite samples
(18, 19). Glycine is the most abundant amino
acid in 11h and has a C isotope value of §'°C =
+19%o, which falls well outside the range for
terrestrial organic C of —6 to —40%o (34) and is
consistent with an extraterrestrial origin.

The enantiomeric ratios of alanine, B-amino-
n-butyric acid, and isovaline in 11h were racemic
within uncertainties (p/L = 1), providing addi-
tional evidence of an extraterrestrial origin for
these amino acids. In contrast to specimen 11h,
nonracemic isovaline was detected in 5b, with an
L-enantiomeric excess of ~7%, and no isovaline
was identified in 11i above the detection limit.
Although the mechanism of enrichment re-
mains unclear, it has been previously shown that
L-isovaline enantiomeric excesses (ee’s) and the
ratio of B-alanine to glycine both increase relative
to the degree of aqueous alteration for many
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carbonaceous chondrite groups (33, 35). Although
the data for specimen 111 relative to 11h or 5b
fit this trend (Fig. 3), in detail the sequence of
alteration for 5b and 11h based on these criteria
suggests that 5b is more altered than 11h, in
contrast to the result from petrography and IOM.
This result suggests that other factors may in-
fluence ee’s and the B-alanine/glycine ratio that
are apparent in the Tagish Lake meteorite. The
higher ratio of B-alanine to glycine in 5b (~0.6)
as compared to 11h (~0.2) may be due to en-
hanced production of glycine during aqueous
alteration of 11h via reactions involving hy-
droxy acids known to be present in SOM (36, 37).
A study of L-isovaline ee’s in Murchison speci-
mens showed a range of ee values from 0 to 15%,
roughly correlative with the abundance of hydrated

minerals in the samples, indicating the role of
multiple, complex, parent body synthetic processes
in amino acid formation (38). The amino acids in
Tagish Lake 11h, including ee’s and overall abun-
dance, may therefore be interpreted as reflecting a
secondary pulse of amino acid formation resulting
from hydrothermal alteration on the Tagish Lake
parent body, which overprinted any original ee’s
with a racemic mixture.

Substantial heterogeneity is preserved within
the Tagish Lake meteorite, especially in terms of
organic matter. The correlation between differ-
ences in organic matter properties and indicators
of hydrothermal alteration indicates that the pro-
cesses were active after accretion onto the parent
body. In this scenario, chondritic components,
including D- and "*N-rich IOM that is best pre-
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Fig. 3. r-isovaline ee’s (bars) and B-alanine/glycine ratios (circles) in Tagish Lake meteorite specimens
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chondrites of differing degrees of aqueous alteration [data from (33)]. The percentage of L excess is
defined as L. = 1% — 0%, with a negative value corresponding to a b excess. LEW, Lewis Cliff; LON,
Lonewolf Nunataks; QUE, Queen Alexandra Range; EET, Elephant Moraine.
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served in 5b, were accreted, along with (presum-
ably) amino acid precursors. The o-amino acids

13. Information on materials and methods is available as
supporting material on Science Online.
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amino acids, as represented by organic matter in
11h. By analogy with MCAs, the exchange of
isotopically heavy C with amino acid carboxyl C
may explain the positive 8'°C values of amino
acids in 11h (such as glycine). The increase in
IOM 8'3C with the degree of alteration (Table 1)
is consistent with the loss of isotopically lighter
C, associated with aliphatics, such as MCAs in
11i and 11v. Further hydrothermal alteration re-
sulted in further modification of IOM and de-
creases in overall concentration of MCAs in 111
and 11v and a nearly complete loss of amino
acids in 11i. The conditions of hydrothermal al-
teration inferred by analogy with experiments,
especially temperature (~300°C) (10, 11, 25), are
at odds with the mineralogy and preservation of
volatile organic compounds, which provide an
upper limit of ~150°C (23). The Tagish Lake
specimens may therefore have experienced al-
teration at lower temperatures than those in the
experiments, with the more extensively altered
samples having been subjected to longer periods
of alteration, higher temperatures, and/or higher
water/rock ratios (11).
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Activation of Visual Pigments

by Light and Heat

Dong-Gen Luo,™** Wendy W. S. Yue,** Petri Ala-Laurila,”® King-Wai Yau»?3*

Vision begins with photoisomerization of visual pigments. Thermal energy can complement
photon energy to drive photoisomerization, but it also triggers spontaneous pigment activation
as noise that interferes with light detection. For half a century, the mechanism underlying this
dark noise has remained controversial. We report here a quantitative relation between a
pigment’s photoactivation energy and its peak-absorption wavelength, Ay.,. Using this relation
and assuming that pigment activations by light and heat go through the same ground-state
isomerization energy barrier, we can predict the relative noise of diverse pigments with
multi—vibrational-mode thermal statistics. The agreement between predictions and our
measurements strongly suggests that pigment noise arises from canonical isomerization.

The predicted high noise for pigments with A, in the infrared presumably explains why they

apparently do not exist in nature.

ur visual system has an extremely high  transduction mechanism with high amplification
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sensitivity to light under dark-adapted
conditions (/). This feat requires a photo-

(2) and a thermally quiet visual pigment for min-
imizing noise. Thermal energy is a double-edged

12. L. Remusat, S. Derenne, F. Robert, H. Knicker, Geochim.
Cosmochim. Acta 69, 3919 (2005).
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beam exposure time, at low magnification with a deconverged beam and small condenser aperture. De
Gregorio et al. (48) showed that this low-dose imaging protocol had a negligible effect on IOM from the

Murchison chondrite meteorite.

Figure S3. HAADF STEM images of samples 5b (A) and 11v (B), with corresponding image masks

showing the location of globules (white). The scale bars are 0.5 um.

IOM: C-, N-, and O-XANES analyses

Following TEM analysis, carbon, nitrogen, and oxygen X-ray absorption near edge structure
(XANES) spectra were obtained on microtomed (to ~ 150 nm thick) samples of Tagish IOM that were

transferred to SiO coated TEM grids. All XANES experiments were performed in transmission mode
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using the scanning transmission X-ray microscope (STXM) located at beam line 5.3.2 at the Advanced
Light Source, Lawrence Berkeley Laboratory (24). This microscope employs a bending magnet for soft X-
ray generation providing a useful energy range of ~ 250 to 700 eV (spanning the C-, N-, and O-XANES
regions). Submicron focusing is performed with a Fresnel Zone Plate objective and an order sorting
aperture- providing spatial resolution down to 25 nm. Energy selection is obtained with a spherical
grating monochromator with a resolution of 5000 eV/AeV. All analyses were performed using the multi-

spectral imaging protocol, and XANES spectra are summed over 100’s of voxels.

A total of 42 nanoglobules were analyzed from IOM from samples 5b (N = 15), 11v (N =12) and a
previous Tagish Lake sample (N = 15; main text: Table 1 and Figure 1, (8)), respectively. Most globules
showed similar C-XANES spectra to that of normal (non-globule) IOM, but a fraction showed much more
aromatic functionality, based on a dominant, broad absorption at ~285 eV (Figure S4). The fraction of
such aromatic globules is slightly lower in sample 5b (3 out of 15 globules) than in the other, more
altered, samples 11v (6 out of 12) and the previous one (5 out of 15), suggesting that either aromatic
globules are generated or IOM-like globules are destroyed during alteration. However, since the globule
sample size is small, the observed population variation between the Tagish Lake samples is negligible if

Poisson statistical uncertainties are considered.

B: C-XANES

Non-globule
IOM i
IOM-like /i
globules '
Aromatic A%

globule

"FFI'IT!'FHTI'I'I‘!TFT“T"I‘I‘ITI‘FHTFH‘ITFI‘I‘I"
270 275 280 285 290 295 300 305 310
eV

Optical Density (arbitrary units)

Figure S4. A) TEM bright-field image of IOM from Tagish Lake sample 5b with nanoglobules
selected for STXM analysis indicated by arrows. B) C-XANES spectra of 5b IOM and nanoglobules.
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IOM: Secondary ion mass spectrometry (SIMS)

SIMS measurements were made in imaging mode with a Cameca NanoSIMS 50L ion microprobe
at the Carnegie Institution of Washington. In a first set of analyses, a 20 pA <300nm Cs+ primary ion
beam was rastered over 25x25 um? or 40x40 um” areas of microtomed IOM slices and negative
secondary ions of 'H, ’H and *C were simultaneously detected in multicollection. A total of 4000 ;,tm2 of
5b IOM and 1800 umz of 11v IOM were analyzed. In a second analysis session, additional IOM regions
were analyzed for H, C and N isotopes. For these measurements, a 1-2pA, ~200 nm diameter Cs" beam
was used to generate images of 1H, 2H, 12C, 13C, 12C14N, 2c15N and %si negative secondary ions in
multicollection. CN" is commonly used for N-isotopic analysis in SIMS because of the high secondary ion
yield for this molecule in the presence of both C and N. A mass-resolving power sufficient to resolve
important isobaric interferences at mass 26 and 27 was used. A total of 6800 pm? of 5b IOM and
1500 pm” of 11v IOM were analyzed. Isotopic ratios for sub-regions of ion images were quantitatively
determined and isotopic ratio images generated with the L'image software package (L. R. Nittler,
Carnegie Institution). A terrestrial standard with composition C33H500 and well-characterized IOM from
the QUE 99177 carbonaceous chondrite (8) were used as isotopic standards. Unfortunately, count rates
for H isotopes were too low under the conditions used for the second set of analyses so reliable H- and
N-isotopic data are not available for the same IOM regions. The distribution of D/H ratios in sub-micron

regions for 5b and 11v IOM is shown in Figure S5.
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Figure S5. The distribution of D/H ratios in sub-micron regions of IOM separates from specimens 5b and

11v.

X-ray diffraction

A sample of each specimen was ground by hand under acetone in an agate mortar and pestle to
produce a fine-grained powder. Powder XRD data were collected using a Rigaku Ultima IV Power
Diffractometer housed in the Department of Earth and Atmospheric Sciences, University of Alberta. The
instrument is equipped with a Co tube and a high-speed Si strip detector. We used Co Ka radiation (A =
1.7903 A) , a step size of 0.02°26 over the range 5-80°26, and 0.3 s count time per step. Samples were
top loaded onto round Al holders (or glass where necessary) and spun at 0.5 Hertz. The detection limit
for mineral phases is estimated at 1 wt%, and the absolute error is approximately 2 wt%. Phase
identification and semi-quantitative phase abundances were determined by Rietveld refinement using
the WPF module of JADE 9.0 software from MDI. Rietveld refinement uses nonlinear least-squares
optimization to fit the data with a calculated model that is based on powder diffraction patterns taken
from the International Centre for Diffraction Data Powder Diffraction File database (ICDD-PDF). Most of
the samples were found to contain abundant clay minerals, for which no ideal structure model exists,

and an amorphous phase not identifiable by the XRD.

EPMA analysis

Major and minor element concentrations in polished samples of each specimen were obtained
by electron probe microanalysis (EPMA) using a JEOL 8900 Superprobe and Cameca SX100 housed in the
Department of Earth and Atmospheric Sciences, University of Alberta. Both instruments were operated
at 1-2 um diameter focused electron beam with a current of 20 nA and an accelerating voltage of 20 kV.
Natural minerals such as chromite, albite, diopside, etc. were used as external standards (49) for both
instruments. Data reduction was performed using the @(rZ) correction (50). The instrument calibration
was deemed successful when the composition of secondary standards was reproduced within the error
margins defined by the counting statistics. Prior to the EPMA analyses chips of each specimen were
prepared into 1 inch diameter mounts using Buehler EPOKWICK two part epoxy and then polished on a
Logitech WG2 polishing unit with pellon polishing pads, diamond paste 6, 3, and 1 micron and Engis OS

type 1V lubricant.
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